174 research outputs found

    Gas and stellar metallicities in H ii galaxies

    Get PDF
    We examine the gas and stellar metallicities in a sample of H ii galaxies from the Sloan Digital Sky Survey, which possibly contains the largest homogeneous sample of H ii galaxy spectra to date. We eliminated all spectra with an insufficient signal-to-noise ratio, without strong emission lines and without the [O ii] λ3727 Å line, which is necessary for the determination of the gas metallicity. This excludes galaxies with redshift ≲ 0.033. Our final sample contains ∼700 spectra of H ii galaxies. Through emission line strength calibrations and a detailed stellar population analysis employing evolutionary stellar synthesis methods, which we already used in previous works, we determined the metallicities of both the gas and the stellar content of these galaxies. We find that in H ii galaxies up to stellar masses of 5 × 109 M⊙, enrichment mechanisms do not vary with galactic mass, being the same for low- and high-mass galaxies on average. They do seem to present a greater variety at the high-mass end, though, indicating a more complex assembly history for high-mass galaxies. In around 23 per cent of our H ii galaxies, we find a metallicity decrease over the last few Gyr. Our results favour galaxy evolution models featuring constantly infalling low-metallicity clouds that retain part of the galactic winds. Above 5 × 109 M⊙ stellar mass, the retention of high-metallicity gas by the galaxies' gravitational potential dominate

    Homology modeling and dynamics of the extracellular domain of rat and human neuronal nicotinic acetylcholine receptor subtypes α4β2 and α7

    Get PDF
    In recent years, it has become clear that the neuronal nicotinic acetylcholine receptor (nAChR) is a valid target in the treatment of a variety of diseases, including Alzheimer's disease, anxiety, and nicotine addiction. As with most membrane proteins, information on the three-dimensional (3D) structure of nAChR is limited to data from electron microscopy, at a resolution that makes the application of structure-based design approaches to develop specific ligands difficult. Based on a high-resolution crystal structure of AChBP, homology models of the extracellular domain of the neuronal rat and human nAChR subtypes α4β2 and α7 (the subtypes most abundant in brain) were built, and their stability assessed with molecular dynamics (MD). All models built showed conformational stability over time, confirming the quality of the starting 3D model. Lipophilicity and electrostatic potential studies performed on the rat and human α4β2 and α7 nicotinic models were compared to AChBP, revealing the importance of the hydrophobic aromatic pocket and the critical role of the α-subunit Trp—the homolog of AChBP-Trp 143—for ligand binding. The models presented provide a valuable framework for the structure-based design of specific α4β2 nAChR subtype ligands aimed at improving therapeutic and diagnostic applications. Figure Electrostatic surface potential of the binding site cavity of the neuronal nicotinic acetylcholine receptor (nAChR). Nicotinic models performed with the MOLCAD program: a rat α7, b rat α4β2, c human α7, d human α4β2. All residues labeled are part of the α7 (a,c) or α4 (b,d) subunit with the exception of Phe 117, which belongs to subunit β2 (d). Violet Very negative, blue negative, yellow neutral, red very positiv

    The Last Stages of Star Formation in dEs?

    Get PDF
    A significant fraction of Virgo cluster early-type dwarf galaxies have blue central colours caused by recent or ongoing star formation. A spectral analysis shows that even in their centers, stellar mass is dominated by an old population. These galaxies are an unrelaxed cluster population that possibly formed from morphological transformation of late-type galaxie
    • …
    corecore